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ABSTRACT 

We investigate the propagation of light rays in a clumpy universe constructed 

by cosmological version of the post-Newtonian approximation. We show that the 

linear approximation to the propagation equations is valid in the region z 5 1 

even if the density contrast is much larger than unity. Based on a general order- 

of-magnitude statistical consideration, we argue that the linear approximation is 

still valid for z X 1. Then we give a general formula for the distance-redshift 

relation in a clumpy universe and derive an explicit expression for a simplified 

situation in which the effect of the gravitational potential of inhomogeneities 

dominates. In the light of the derived relation we discuss the validity of the Dyer- 

Roeder distance. Furthermore, we consider a simple model of an inhomogeneous 

universe and investigate statistical properties of light rays. We find that the result 

of this specific example also supports the validity of the linear approximation. 
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1. Introduction 

In the last several years large-scale structures of the universe has become 

an active area of research in cosmology. In spite of extensive theoretical as 

well as observational efforts, we have not yet understood the formation of the 

structures. Further observationsJ information such as more complete survey of 

galaxies at high redshifts is definitely necessary in order to improve the situation. 

Fortunately it is expected that rapid progress in the observational techniques and 

the appearance of new telescopes of the next generation will bring about vital 

information on the structure of the universe in near future and open a new era 

for the observational cosmology. 

On the other hand it seems that careful attention has not been paid for theo- 

retical aspects of the observational cosmology. One of the difficulties is that light 

rays from distant galaxies might have propagated through intergalactic space in 

which the density is much lower than the average density of the universe. Thus it 

is not clear at all if the averaged homogeneous, isotropic J?riedmann-Robertson- 

Walker (FRW) metric may be used as an appropriate metric on which light 

propagates or not. In fact the averaged FRW metric coincides nowhere with the 

real inhomogeneous metric. Since light feels local metric not the averaged metric, 

there is no justification for using the FRW metric to calculate the propagation. 

Nonetheless it has been customary to compare observations of distant galaxies 

with the predictions of a FRW universe. Otherwise rather crude descriptions 

of inhomogeneities such as the Dyer-Roeder model’l’or Swiss cheese model are 

used to interpret the observational data. It is not known in what sense such 

descriptions approximate inhomogeneities of the real universe. 

There is also another problem. Even if one has a realistic description of inho- 

mogeneities, it is not straightforward to relate theoretical quantities calculated 

on the inhomogeneous metric with actual observables. Without such relations, 

we will not have the correct interpretation of observational data. In view of 

rapid progress in the observational side it seems urgent to develop a consistent 
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theoretical tramework of observational cosmology. 

Recently a consistent theoretical derivation of important relations in the ob- 

servational cosmology such as the magnitude-redshift relation was given in a 

linearly perturbed FRW universe!“‘] Also an approximation method for an inho- 

mogeneous universe beyond linearized theory which is applicable to the present 

clumpy universe as well as to a linearly perturbed FRW universe is developed!” 

The purpose of the present paper is to study the light propagation in a re- 

alistic inhomogeneous universe constructed by the approximation method men- 

tioned above and to extend the derivation of the magnitude-redshift (or distance- 

redshift) relation in the linearized case to the nonlinem case in which the density 

contrast is much larger than unity. 

The paper is organized as follows. In 52, we review the method for con- 

structing an approximate metric for an inhomogeneous universe and clarify the 

condition for the cosmological version of the Newtonian approximation. In 93, 

assuming that the condition for the Newtonian approximation is satisfied, we 

consider the propagation of light rays in an inhomogeneous universe and argue 

that the linear perturbation can be applied to the light propagation equations 

even in a highly inhomogeneous universe. In §4, we give the basic formula for 

the distance-redshift relation in an inhomogeneous universe, derive an explicit 

expression for a simplified case and compare it with the Dyer-Roeder distance. 

Our distance coincides with Dyer-Roeder’s in the region z S, 1. Then we con- 

sider a simple model of an inhomogeneous universe and compute the probability 

distribution of fluctuations in the distance-redshift relation. We find the result 

is in agreement with the general discussion of 53 and supports the validity of 

the linear approximation, even for very high redsbifts. Finally, 55 is devoted to 

conclusions. 

4 



2. Approximation of inhomogeneous metric 

2.1. GENERAL SCHEME 

In order to make this paper self-contained, we shall briefly explain the ap- 

proximation method for constructing the metric of an inhomogeneous universe in 

general relativity developed by one of us!” Since the calculational detail has been 

presented in Ref.[4], we discuss mainly the physical idea behind the method and 

present the results. The method applies for the nonlinear stage as well as linear 

stage as far as the metric deviation from the FRW background metric. As shown 

below, this does not of course impose the smallness of the density contrast. 

We assume that the spacetime considered here may be parametrized by two 

independent small parameters e and n. The c is associated with the amplitude of 

the gravitational potential (4) g e n erated by inhomogeneous distribution of mat- 

ter, 4 - e2. The n is the ratio between the typical scale of the inhomogeneities 

(!) and the scale of the background spacetime (I;), n = e/L. The relative size 

of c and n depends on the system we have in mind. Since the metric fluctuation 

is generated by the density fluctuation 6p via Poisson equation, the density con- 

trast 6p/pb may be evaluated from A4/(Gpa) - e2/n2, where pb is the averaged 

density (see below). Thus the linear and nonlinear stage may be characterized 

by the condition K. > c and e > n, respectively. For example, if we take a super- 

cluster whose size is about 30Mpch-‘, then n will be - 30/3000 N 10-z, where 

L - 3000 Mpch-’ is the present horizon size. We do not know the order of the 

gravitational potential for such a system, but the density contrast seems to be 

of the order of unity. Thus the gravitational potential would be ca - n2 - 10e4 

for such a system. The size of supercluster seems to be the boundary between 

the linear and nonlinear regions. We also note that typical values of c and n for 

galaxies a.!x c - 1O-3 and n N lo-4.5. 

We make the following ansatz for the metric, 

9ru = 4d(b + hlrv) 7 P-1) 
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where a is the scale factor which describes the averaged global expansion and 

is assumed to be a function of the conformed time II. It is also assumed that 

al/a = 0(1/L) where the prime means the derivative with respect to 7. The 

h’s are supposed to be generated by inhomogeneous distribution of matter and 

by possibly gravitational waves. We do not consider the latter possibility in this 

paper and assume that h,, = O(c’) and h,,, = O(e’/f?). We assume that the 

spacetime considered here reduces to the closed, flat or open FRW spacetime 

depending on the curvature of the spatial section K = +l,O or -1, respectively, 

when the matter distributes homogeneously and h,, vanish identically. Thus the 

yrv is the standard metric for one of the FRW universes. 

The above ansatz for the metric is used to expand the Einstein equations in 

terms of c and n as follows: 

3{2($ + K}(K~ + $) + 3{$ +x} 

- ;(v + g,,, - ;,,p = 8nG9, 

{3($ + 2K)iP + (;)(m + gi + $,I, = 87rGTVi ) 

{2: _ (g)‘j(x’j + +jp _ ,jiL) + K(pi _ .$iih) 

+ i(i)’ + 2: - qrij + G(2l;dilj) _ pjlv + i+j&lv) 

lgGlp 
-;i IP 

= 8nG&, 

(2.2) 

(2.3) 

(2.4) 

where we have used the trace reversed metric perturbation defined by hp” = 

M’” - ;rijh and worked in the harmonic gauge h“‘;” = 0. The indices on h 

and L are shifted by the background metric Y,,” and the bar indicates a covariant 

derivative with respect to r,,“. +‘” = a4T~“+t~” is the total effective stress energy 

pseudotensor. The tfi” consists of terms quadratic in h and may be interpreted 

as a gravitational stress energy pseudotensor. In deriving the above equations, 



we have neglected terms of order higher than O(E~/K?) with the assumption 

that ra < n which we assume throughout the present paper. Provided that 

one focuses on cosmological problems in which structures of interest are above 

galactic scales, this assumption gives practically no restriction for applicability 

of the present scheme to the real universe. 

The equations for the averaged global expansion is obtained by taking the 

spatial average of the above equations. The results may be written as follows: 

a” 
-+++K, 
a (2.6) 

$12 (P),rlj,v + (4% - 2 (c)’ - 2~) (3 = 16+2 (ii”) . (2.7) 

In deriving the above equations we have assumed (7”‘) = 0 expressing no coherent 

motion over the volume to be averaged and we have required that (ilm) = (i;.:) = 

CI by choosing appropriate time variable and the scale factor. The spatial average 

of the line element takes then the following form, 

(da”) = -3’ [-d$ + (%j + (h;j))dZ’dzj] , (2.8) 

Thus (hii) express the deviation from the isotropic expansion due to the inho- 

mogeneities (i’j) and the averaged spacetime expands an&tropically except if 

(Xii) vanishes identically. Equations (2.5) and (2.6) are the same with the eque- 

tions of the FRW model except that the source terms are replaced by the total 

effective stress energy pseudotensor including gravitational contribution. Thus 

the effect of local inhomogeneity on the global expansion may be expressed by 

the effective density peff = a2 (7”) and the effective pressure p.ff = fez” (7:). 

The equations which determine the local metric may be derived by subtracting 



the above averaged equation from the original equations (2.2) - (2.4). These are 

as follows: 

Oil” = -lGxG(r”s - (T)) 

+ ;(&;,i - b:,,,) + 3(2(c)’ - K)(@‘i + f$), 
(2.9) 

q fL+ = -lfjx(-&v + t$mrli + q’) + 6(+, (2.10) 

q iii = -l~RG,fij + G2j$ 
+ qpdilj) + $iji;yt) _ ~s($J’ _ 2: _ ~12, (2.11) 

oil: = -lGnG(rL - @)) 

+ g(h:,. - Ii;;) + 4{ 
0 

Fi 
2 

- 2$@ + K(3il” - hi), 
(2.12) 

a a 

=ij _._ 
where h = h'J - f-& is the spatial trace free part of the perturbation and 

may be regarded as the gravitational wave degrees of freedom. Above equations 

are of course supplemented by the equations of motion T'yv = 0 or 

my+ G(~T~P +.p~) + (Lfl,, ~ + &“)T" -($,TP“ + ;+T)= 0. (2.13) 

Then the calculated perturbations !#” arc used to construct the local metric 

da2 = 4~)(r&w + hNY), (2.14) 

where a and (/I,,~) are calculated from the global equations (2.5) - (2.7). 
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2.2. LINEAR AND POST-NEWTONIAN APPROXIMATION 

In this subsection, we construct the linear and post-Newtonian approximation 

from the equations derived in the above. First we give a characterization for the 

linear and nonlinear regimes. Since hm N e* and Gpb N l/Lz, pb the averaged 

density, by definition, we can easily obtain the order of the density contrast from 

the local equation (2.9), 

sp, 2 

Pb 
2’ 

Thus the linear and nonlinear regimes are characterized by the condition n > c 

and c > n (>> e2 by assumption), respectively. 

We first consider the linear approximation which applies for the linear regime 

n > e. In this regime the dynamical timescale of the density fluctuations will be 

of the order of the timescale of cosmic expansion. Then the equations of motion 

is used to evaluate the order of the velocity as l 2/n. Thus we have the following 

ordering in the linear regime, 

fi”” - 2 < 1, 6p 2 .g 
w-<l) V’N- 

Pb Ka 

Every perturbed quantities are much less than unity and their second order terms 

are safely ignored. For example, 7”” may be approximated by a4Tfi”. This is of 

corse what we call the linear approximation. If we take the perfect fluid form 

for the stress energy tensor, we may neglect the spatial trace free part because 

these are second order in velocity and thus the averaged spa&l trace free part of 

the metric perturbation 
‘i 

( > 
!z’ may be neglected. Thus the spacetime expands 

isotropically in this case. The expansion equations (2.5) and (2.6) reduce to the 

usual equations for a FRW model. 

Next we consider a cosmological version of the post-Newtonian approximation 

which applies for the nonlinear regime c > n. In this case the dynamics of the 

density fluctuation is totally governed by its self gravity and thus the dynamical 



time scale will be the Newtonian time defined by T = crl?)!l’ The equations of 

motion then give the proper relation 4 - o2 where C$ is the Newtonian potential 

generated by the density fluctuation. Thus we have the following ordering in the 

nonlinear regime, 

4 - 2 << 1, Il’j - e4 e I, d - c a I, b --$A. 
Pb 

(2.17) 

This ordering allows us to neglect terms like (of/a)‘@‘” in the equations (2.9) 

- (2.11) and to solve the equations perturbatively. The lowest order equations 

are just the Newtonian equations and the next order is order c2 smaller than the 

Newtonian order. Thus we may safely use the Newtonian approximation as far as 

E is sufficiently smsll, but much larger than a. In such a region the approximated 

line element is given by 

ds2 = a’(q) [-(1 + 2’I’)d$ + (1 - 29)yijdz’dzj] , (2.18) 

where a and \E are determined by the following equations in the lowest order: 

($ = y,, - K (2.19) 

0) 
A ‘Ii’ = 4aGa26p, (2.20) 

where 2 is the Laplacian operator in the spa&l section. Thus q is the Newtonian 

potential generated by the density inhomogeneity. The equations of motion in 

the lowest order are the usual conservation law and the Newtonian equation: 

(2.21) 

(2.22) 

where ui = dz’/dq. In particular, Eq(2.21) implies pb cc a-’ at this order. Thus 

the conventional FRW model is justified as a model for the averaged background 

universe. The higher order corrections are calculated elsewhere. 
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It should be pointed out that we may write the line element in the above 

form (2.18) even in the linear approximation by choosing an appropriate gauge, 

namely the so-called Newtonian gauge. It is known in the linearized theory 

that the potential satisfies the same Poisson equation (2.20) and is interpreted 

as the Newtonian potential. The difference between the linear approximation 

and Newtonian approximation is then the equations of motion. We may thus use 

the above expression for the line element in the linear as well as the nonlinear 

regions. 

3. Light propagation in an inhomogeneous universe 

We now consider the propagation of light rays in an inhomogeneous universe 

constructed by the previous method. Thus the line element takes the form (2.18) 

in the linear as well as the nonlinear regimes. We may safely adopt the geometric 

optics approximation in the cosmological context. Since the constructed metric 

takes the form gV = aa(y,,,+hpy) = a’j,,:,, and the light propagation is unaffected 

by conformal transformations, it is rather convenient to work in the conformally 

related spacetime i,,“. In the following, quantities with tilde are quantities in the 

conformally related world. 

The basic equations for the propagation of light rays are 

-p + F$Pifl= 0) 

;j = -fi&q - 92 - 252, 

de -jpp = -43 ,pp.Jw - &a,, ) 

(3.1) 

where the first equation is the null geodesic equation and the second and third are 

the equations for the expansion 4 and shear tensor i+‘rrp of the bundle of light rays. 

Our strategy here is to show first that fluctuations in Eqs.(S.l) and (3.3) due to 
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the presence of inhomogeneities are small. Then we consider EqJ3.2) and look 

for conditions for the validity of the linear approximation for the propagation of 

light rays. 

We write the 4-momentum of the light rays as follows: 

ii” = k’ + 6k’ (3.4) 

where kJ’ is the 4-momentum in the unperturbed metric Q = 0 and satisfies the 

geodesic equation, 

$k’ + l?;kPk” = 0 (3.5) 

where I’& is the Christoffel symbol of the metric r,,“. This equation then tells 

us that k“ = O(1). The 6kp satisfies the following equation, 

&Sk’ f 6T&kPk” + 2l?&kP6k” = 0, (3.6) 

where we have neglected higher order terms and 6r& is given by 

6r$ = $yh,p,s + hvolp - h,iv). (3.7) 

From this expression we find that 6l?& = O(e*/e). 

As for the shear, it vanishes on the unperturbed background since the Weyl 

tensor is identically zero for y,,“, p rovided the light rays are originally shear-free. 

Hence the propagation equation at the lowest non-vanishing order is 

d 
-jpQ = -6 ,xp,skpko - e&p, (3.8) 

where we have C’,pp, = O(c* If?.*). 
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Now consider the propagation equation for the expansion. The Ricci tensor 

is approximately written as 

&w = R,v + 6R,v t (3.9) 

where Ii,, = 2KyijSi6i is the Ricci tensor of the unperturbed spacetime and 

6R,, is given by 

6&J = ~Y”P~,(,,y)p + h,+l# - h@+“) . (3.10) 

Note that 6R,, = O(c2/e2). We decompose the expansion as 

ti=e+h?, (3.11) 

where 6 is the expansion on the unperturbed background. Then 19 and 68 satisfy 

the following equations, 

-$= -2K+, (3.12) 

&68 = -6(Rpvk*k”)A - 860 - ;68’ - 2C2, (3.13) 

where 

6(Rpk’k”)A = 6Rpk”kY + 4K$(ki6Zi)) (3.14) 

with 6~’ being the perturbation of the geodesic path and we have used the fact 

that the shear vanishes in the unperturbed FRW universe and assumed that the 

perturbation 6k“ is small, which we shall verify shortly. Note that the expansion 

on the unperturbed background is 0 = 0(1/X). 

First we consider 6kp. Imagine a universe idled with objects (galaxies) of 

size e whose density is 6p = (e2/na)pb. Hence the mean separation distance is 

~CJ = (c/Jc)‘/~L Then for a geodesic a&e distance of A, the light gravitationally 
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encounters such objects Nr = X/Q = c-~/~K-‘/~(X/L) times in average. In each 

encounter, the integral of the geodesic equation gives the contribution (e’/b) x 

6 = c2 to 6k@ where b is the impact parameter (b S TO). However, since the 

sign of each contribution will be random, the total contribution to 6kJ‘ will be 

fl2 = ,4/3(,2/,)‘/6(X/L)‘/Z, which is always much smaller than unity, since 

c2 < n by assumption and X S L (note that the affine distance to the source 

object X is bounded from above due to the fact that the age of our universe is 

finite). It should be mentioned that since the contribution of each encounter is 

independent of b, the direct encounters which are much rarer events are totally 

unimportant in this case. Thus we conclude that the linear approtimation is 

valid for the evaluation of Sk@. 

As for the magnitude of the shear, the same argument as above leads to the 

estimate 9 - (ea/n)(X/L3) as the contribution from gravitational scattering, 

where we have assumed that the mean impact parameter (b) is of the order TO. 

The contribution from the direct encounters can be similarly estimated by noting 

that the average number of encounters is hrd = (e2/ri)x = (n/e’)(X/L) with each 

encounter contributing (e2/ea) x e = l z/.! with random sign. The result turns out 

to be the same as that of gravitational distant encounters. Hence we conclude 

that Za N (ta/n)(X/Ly. 

Finally let us consider the expansion. From the above estimate for the shear 

and from the fact 0 = 0(1/X), we find 60/e = (E~/K)(X/L)~ ec 1 as the con- 

tribution of the shear. Thus the linear approximation for the evaluations of the 

shear and its contribution to 60 is justified. To evaluate the contribution from 

the perturbed Ricci tensor, it is important to know the explicit form of 6RPvk*kv 

(see Eq.(4.3) below); 

bR,,k”k” =22 *j-O K; . 
c > 

(3.15) 

Hence from the Poisson equation (2.20), the dominant contribution from 6R, 

to 60 comes only from regions where 6p/p is non-vanishing, i.e., there is no 
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contribution from distant gravitational encounters at the leading order. 

The contribution from the direct encounters with galaxies can be estimated 

similarly as above. We obtain 60 - (call’) x 6 x hrd, where note that each 

contribution to 68 is negative definite (since 6p/pb is positive definite) in this 

case, hence adds up secularly as oc Nd. This gives 60 = 0(X/L’) and we obtain 

60/e = O(X2/L2). Hence the linear approximation is valid if (A/L)2 < 1, i.e., 

s2 < 1. On the other hand, we have 6R,,,,kck” = O(l/Ls) in intergalactic space. 

Hence it gives 60 - (l/L’) x X which is the same as the contribution from galaxies 

in magnitude but has the opposite sign (since 6p/pb is negative definite). There- 

fore, provided the number of encounters of a light ray with gab&es is sufficiently 

large (Nd - 30(x/L) for galactic scale objects), we can expect these two contri- 

butions to cancel each other on average. The resudial fluctuation in 68 will be 

proportional to fi 60 - (e2/t?) x k2 x fi, hence (68/8)2 - (~*/K)(A/L)~ < 1. 

Note that the assumption I? < IC guarantees hrd > 1 for z 2 1. As a result the 

linear approximation will be valid even for X = O(L), i.e., for z > 1. 

The above argument may sound too naive. However, as for the shear con- 

tribution, there exists a more detailed theoretical argument[“which supports our 

result. As for the perturbed R.icci tensor contribution, in the next section, we 

shall investigate statistical properties of light rays in a simple but reasonable 

model universe and show that the results are indeed consistent with the above 

argument. Further, recent numerical calculations by Watanabe”’ also seem to 

support the validity of the linear approximation. To summerise, we conclude 

that except for a statistically very rare kind of light rays, the linear approxima- 

tion can be safely used to study the propagation of light rays in an inhomogeneous 

universe in which the density contrast is much larger than unity as long as one 

focuses on a region sufficiently smaller than the horizon scale, i.e., z << 1, and it 

is a very good (if not the best) approximation even for z > 1, provided that our 

approximation based on the expansion in terms of c is applicable to the universe, 

i.e., 2 < n. 
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4. Distance-redshift relation 

4.1. BASIC FORMULAS 

As discussed in $2, the approximate metric (2.18) gives a sufficiently accurate 

description of the real universe. Further, we have seen in $3 that the linear 

approximation can be used to investigate the propagation of light rays in the 

region z ,S 1 (and probably even for z X 1, provided one is interested in average 

light rays). These imply that most of the arguments given up to $4 of Ref.[2] 

hold also for a highly inhomogeneous universe, under the assumption that l z < n, 

since only geometrical considerations but non of the Einstein equations were used 

there. The only modifications we have to make are to include the contribution of 

the shear in the propagation equation for the expansion and to retain terms of 

O(v2) in the expressions for perturbed four-velocities of the source and observer. 

Note that O(e) N O(ua) in the Newtonian situation. 

It follows that the distance-redshift relation in an inhomogeneous universe, 

written in the Newtonian gauge, is expressed as’z’p’ 

Wz,r’) = 
h(z) 

6dA(z’ +) = &7!?6A, coth aA, + I, 
dd(z) 

(4.11 

with 6X. and I given by 

6&=((~)~-A*) { (9-ui~‘-lu2]~fZ~~‘(~)) 
(4.2) 



dX sinh’ v’??X (coth GA - coth GA,) 

;6(R,,k~kY)A +$ 

(4.3) 

$$wk’kY)x =$i q - (q” +22&ipj 

(g -t& - :~‘)a + 2 

where 6dL/dL (add/d,) is the anisotropy in the luminosity (angular diameter) 

distance to a given redshift z measured in the direction of +, v2 = u;vi, A, = 

v(z) - 70 is the conformal distance to the redshift t in the averaged background 

universe, the suffix s denotes a quantity at the source of redsbift z, the suffix 0 

for z = 0, S”(x) = a%‘(n(x),r’(A))/8n, etc.. Note that dL = (1 + z)2dA holds 

for arbitrary spacetimesl”‘which guarantees 6dL/dr, = 6dA/dA (e 6d/d). The 

difference between the case of linear density perturbations and the non-linear case 

is that 9 and ui are determined from the Newtonian equations (2.21) and (2.22) 

in the latter, while they are determined from the linearized Einstein equations in 

the former. 

For distances in the range e Q A, 5 L, the examination of the order of 

magnitude of each term in Eq.(4.1) - (4.3), in the non-linear case, shows that 

the leading terms, up to the order of c?/K., are those involving 2 Q, $ and viri. 

Neglecting the other terms we find 

6d -=- - 
d 0 

t r’ &ZcothJ-?7& { (vi#)# - (&)s} + (ni?), 

A. 

-- 
A, I 

dA sinh’ -A (coth GA - coth GA.) (4.4) 

x {4rG6pa2 + 2) , 
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13) 
where the Poisson equation (2.20) was used to replace A ‘I! by 6~. Further com- 

parison of the remaining terms, with the same strategy we took in the previous 

section, shows the first term (cc {(uir’)s - (v;y’)c}) is generally most important 

for 

d - X,fL 5 2/J E zcr, (4.5) 

and the density term (cx 6p), otherwise. However, the other terms can be impor- 

tant at high redshifts if the integral of the density term gives zero in average as 

we discussed in $3. We note that the first term describes the usual Doppler effect 

due to the peculiar velocities of the source object and the observer, which is used 

in the determination of the peculiar velocity field on large scales (5 50 Mpch-‘). 

Note also that with typical values of c for galaxies, one has tcr - 10-r, or a 

distance of - 300 Mpch-‘. 

Now let us discuss the relation of Eq.(4.4) to the Dyer-Roeder distance!’ 

To do so, we must assume the same physical situation as the one assumed in 

deriving the Dyer-Roeder distance. That is, we assume that light propagates 

only through the intergalactic space where the density is uniform and given by 

prc = apb (0 5 o < 1). Hence 6p = -(l - a)pb. In addition we assume that 

the potential gradients can be neglected in the intergalactic space so that there 

is no shear contribution. Further we consider a spatially flat universe (K = 0) 

for simplicity. Then Eq(4.4) is easily evaluated to yield 

6d -=- 
d 

(4.6) 

In accordance with the general argument used to derive Eq.(4.5), the above equa- 

tion clearly shows that the Doppler term dominates for z S v1i3 - 8’ but 

becomes unimportant for .r 2 u1f3. 
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Let us concentrate on the case when the peculiar velocities are negligible and 

compare our result with the Dyer-Roeder distance. The Dyer-Roeder (luminos- 

ity) distance for the spatially flat universe is given by”’ 

dDR(z; a) = $1 + p [(1+*)8/d - (1 + z)-fl/4] , (4.7) 

where /? = Jn. It is then easily shown that our result (4.6) coincides 

with Eq.(4.7) in either of the limit 1 - a < 1 or z < 1. In fact, the coincidence 

is much more impressive than one would formally expect; the relative error is 

less than 0.5% at z = 1 and about 10% at t = 5 even for the extreme case of 

(z = 0. Of course, this coincidence is not accidental. If we examine the essential 

assumption which lead to Eq.(4.6)(with the velocity terms neglected), we find it is 

the fact that the perturbation in the affine parameter distance 6X. is negligible, 

r.e., one can use the geodesic equation on the background FRW spacetime to 

relate the redshift of the source object with the aSine distance. This is just the 

assumption used to derive the Dyer-Roeder distance. Hence apart from the fact 

that we employed the linear approximation in evaluating the expansion of light 

rays, there is no essential difference between the two. 

The above discussion, together with the considerations given in $3, shows the 

validity and the limitation of the use of the Dyer-Roeder distance. First of all, it 

is valid only if e2 << n so that the contribution of the shear can be neglected. Then 

it is valid for 1 2 .s 2 .P N c1i3 if light rays which reach us came only through 

intergalactic space. Since the fact that 6kJ‘ is small is always true even for .z 2 1, 

the Dyer-Roeder distance is, in the mathematical sense, probably valid also for 

z 2 1. However, because the condition c2 < n implies that the expected number 

of encounters of a light ray with galactic objects are large; Nd N n/e2 > 1 for 

.z 2 1 (see §3), it becomes increasingly rare for a light ray to pass only through 

intergalactic space. Consequently, the Dyer-Roeder distance becomes physically 

almost useless for z X 1. 
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4.2. STATISTICAL CONSIDERATION 

We now focus on the contribution of the density term, which is seemingly 

not only dominant but also non-linear, to the propagation of light rays and 

investigate their statistical properties in terms of the distance-redshift relation, 

under the linear approximation, in a simple model of an inhomogeneous universe 

(see Ref.[ll] for a similar analysis). In particular, our main intention is to show 

that the results are consistent with the linear approximation. Hence our basic 

equation is 

I-= (~)6u=~~d~(~-“‘)~~‘. 
0 

(4.8) 

We consider a spatially flat universe whose average density is P*, in which stellar 

objects (galaxies) of equal mass are placed on a cubic lattice of constant comoving 

size, and the rest of space (intergalactic space) has a uniform density crps. The 

galaxies are assumed to be spherical and uniform in density with a constant 

proper radius R,. Then, we employ the so-called Wigner-Seita approximation, 

frequently used in nuclear physics, and replace each cube of the lattice by a sphere 

of comoving radius TO, With this approximation, the Einstein equations in each 

Wigner-Seite cell become 

0 - a’ a 2 =TPba2 8nG 9 

2 q 

(4.9) 
=4xG(1 +” - a)paa2 @(R. - m) - 1 1 ; F<TO, * 

where B(z) is the step function and the center of the cell is chosen to be the 

origin. 

We divide the integral in Eq.(4.8) into intervals [Xi, Xi+AX] (AX N TO << A,); 

A;+AA 

J dX $!‘P. 

.b 

(4.10) 

In order to avoid inessential complications, we further replace the sphere of radius 
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TO by a cylinder of radius TO and height AA such that the volumes of the two 

are equal and assume that a light ray comes into the cylinder parallel to its axis. 

Thus we take AX = (4/3)~. Then in each interval, if the light ray passes through 

the galaxy, on average it will give the integral the contribution, 

,k+AsI 

J 
xi (4.11) 

This occurs with the probability p = R~/(a~o)~. On the other hand, regardless 

of whether the ray hits the galaxy or not, there is always a contribution to the 

integral given by 

&+A). 

J dX ‘2 \E = - 4nG(l - a)paa2 x ;T~ 

Ai 
16 

= - 3~G(1 - a)pba2~o. 

Thus we may rewrite I; as Ii = c;zi where 

TO A( Ai - Aa) 
Ci =8(1 - CX)- 

A, (70 - %I2 ’ 

I 

-Je- 
(4.12) 

Zi = - ait+) - 1 ; pi = (GTo)2 ’ 

and the back ground equations (pb oc a-j, a 0: q2) have been used. Then the 

probability distribution of z; is given by 

Wzi) =PiJ(+i- 5) +(l-pi)6(+; +I), 

and the probability distribution of I = xi cizi is expressed as 

(4.13) 

We note that Eq.(4.13) implies (Zi) = 0, which in turn implies (I) = 0, the result 
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in accordance with the argument given in $3. 

To evaluate the probability distribution function P(I), we consider the char- 

acteristic function of P(I). We find 

m 

F(q) E / P(l)&‘dl 

= &; p(zi)ei9cizi 1 
,,-iqC;ciexp Cln [l +pi(t7iq(c”P’) -l)] ’ 

(; > 

Using the fact pi < 1, the above can be approximated as 

F(q) = ,-igC; ci exp C pi(eidcilp~) - 1) 

ii 1 . 

Hence, at p << 1, we obtain 

=exp [-if(z)p’] , 

where from Eqs.(4.12), the function f(z) is given by 

(4.15) 

(4.16) 

(4.17) 

f(z) =(I - q)$!!g% (r&i y3 

x0.1(1 - a)h-2 F 
2 

i >( * o*5~ch-l)3 (z;y3, (4.18) 

where & = ~OTO is the present proper radius of the comoving cell, i.e., half the 

mean separation distance of galaxies and HO = 100 hkms-‘Mpc-’ is the Hubble 
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constant. On the other hand, for q + co, the exponential factor in the exponent 

of F(p) oscillates rapidly and vanishes on average. Hence we find 

(4.19) 

where g(z) and lo(z) are given by 

g(z) =-$&- [(l + .)3’2 - 11 

=3ohl ;p;). (““T”-‘>‘ ,(1 +z)~/~ -11 , (4.20) 

lo(z)=3(1-CY) $$;:ln(l+z)-4 , 
* 1 

where lo is just the Dyer-Roeder part of the distance-redshift relation given in 

Eq.(4.6). It is also clear that g(r) represents the “optical depth” associated with 

encounters of light rays with galaxies!‘] 

Now combining Eqs.(4.17) and (4.19), and taking into account the facts that 

(1) = JP(l)dI = 1 and (I) = sIP(I)dI = 0, we deduce that 

00 

P(I) =& J F(q)e-iqJdq 

-co 

O(l - e-q d& exp (I - Il(zl)2 
- 1 (4.21) 

2f (xl 
+ emg(‘)6 (I - IO(Z)) , 

where I, is given by 

II(%) = - eg(.:- /O(%). (4.22) 

The interpretation of the above distribution function is very easy. The term 

proportional to the delta function represents light rays which never encounter a 
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galaxy, hence giving the Dyer-Roeder distance for I. Of course, the appearance of 

the delta function is due to the simplification we adopted for our model and not 

real. For example, any contribution from the shear or the density fluctuations in 

intergalactic space will develop a finite dispersion. The other term of a Gaussian 

form in Eq.(4.21) represents those light rays which encounter galties at least 

once. Thus II(Z) and f(z) are the mean value and the dispersion, respectively, 

of I for such rays. 

What we have to show is that the probability distribution function (4.21) 

is consistent with the assumption used to derive it, i.e., the linear approxima- 

tion. The consistency demands (I”) < 1. The expectation value (I”) is easily 

calculated to be 

(P) = ,g(,~- 1~~(~)2 +(I -emg(“))f(Z). (4.23) 

It is easy to see that the first term proportional to 1; is always very small at any 

redshift. Incidentahy, this implies 11 is very small at any redshift (an order-of- 

magnitude evaluation shows Ifrl,,, = O(c4/h2) at z N ~?“/a). The smallness of 

the second term wiIl be guaranteed if f(r) < 1 for any z. As given in Eq.(4.18), 

for characteristic values of R, and a, we find f(z) is always smaller than unity 

(note that Eq.(4.18) is indeed in the form f(z) = O(e’/a), in agreement with 

the order estimate given in 53). Thus not only the general order-of-magnitude 

argument of 53 but also the specific model consideration of this section support 

strongly the validity of the Linear approximation for study of the propagation 

of light rays in a highly inhomogeneous universe, and hence the validity of the 

formula (4.1). 
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5. Conclusions 

We have carefully investigated the propagation of light rays in a realistic 

inhomogeneous universe. We have found that the linear approximation to the 

propagation equations is valid even in a universe with very high density contrast. 

Then we have derived a general expression for the distance-redshift relation (4.1). 

It should be stressed that the relation has been derived totally within the frame- 

work of general relativity without any ad hoc assumption. 

Based on the drived relation, we have been able to clarify the validity and 

the limitation of the use of the Dyer-Roeder distance; it is numerically valid only 

for 1 X z 2. cl/’ if the light rays which reach us have traveled only through inter- 

galactic space. In more general situations, one has to use Eq.(4.1) to construct 

the distance-redshift relation. The equation can be evaluated explicitly once the 

density and velocity distributions are given throughout the region of interest. 

We have given some plausible arguments that thus constructed relation is 

valid for any redshift provided e2 < n is satisfied and the condition gives prac- 

tically no restriction for its applicability to the real universe as far as regions 

of interest are above galactic scales. Although the validity of Eq.(4.1) should be 

checked more rigorously (for example, by a careful numerical analysis which takes 

full account of non-linearity in the propagation equations), if it is indeed justi- 

fied, it will play a fundamental role in the correct interpretation of cosmological 

observations. 
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